

Pavement Design for In Place Recycling

September 13, 2012 Western States Regional In-Place Recycling Conference Todd Thomas, P.E., Colas Solutions Inc.

Outline

- Purpose of pavement design
- Pavement evaluation
- Pavement design procedures
- Material characteristics
- Structural coefficients / GE values
- Example structures
- Summary and conclusions

Purpose of Pavement Design

- Evaluate the existing pavement to determine the viability for the in-place recycling process
 - Input needed for design
 - Assess the pavement for equipment support (i.e. CIR train)
- Determine LCCA options
- Determine the thickness of recycled layers and overlay, if needed

Pavement Evaluation

- Coring
 - Needed for mix design
 - Delaminated / stripped layers
 - Dynamic cone penetrometer option
- More important for CIR & FDR:
 - Deflection testing
 - Falling weight
 deflectometer (FWD)
 - Dynaflect
 - Ground penetrating Radar (GPR)

Material characteristics

- HMA industry tests have been adapted for bituminous CIR and FDR mix designs (exceptions – raveling, cohesion) and HIR
- Bituminous CIR and FDR can have slightly lower modulus than HMA
 - Cement FDR acts like a weak PCC
 - Mechanical FDR acts like granular base
- HIR acts like HMA

Material characteristics

Typical quantities

- CIR 1.5 to 3.5% emulsion (65% residue)
- FDR
 - 3 to 6% emulsified asphalt
 - 1 to 3% foamed asphalt
 - 3 to 6% cement
- HIR
 - < 1% recycling agent</p>

Pavement design procedures

 1993 AASHTO Guide for the Design of Pavement Structures

- Rehab design: $SN_{OL} = SN_f - SN_{eff}$

- Caltrans Flexible Pavement Rehabilitation Manual
- Mechanistic Empirical Pavement Design Guide
 - NCHRP study underway for CIR and FDR

Pavement design – surface courses

- WMA / HMA binder and wearing courses
- Rubberized asphalt concrete
- Ultra-thin bonded wearing course
- Surface treatments micro surfacing or chip seal, etc.
- Dense-graded cold mixes

The recycled layer must be covered by at least a bituminous treatment (i.e. micro surfacing or chip seal). The specific treatment needed will depend on pavement design and ride expectations.

Structural coefficients / granular factors

Treatment (and thickness)	AASHTO coefficient range	Caltrans G _f
HMA / HIR (3/4" to 2.5")	0.40 - 0.44	1.9
Aggregate base (6-14+")	0.10 – 0.12	1.1
Mechanical FDR (6-10")	0.10 – 0.12	
Bituminous FDR (4-8")	0.20 – 0.28 (0.25)	(1.4 – 1.6)
Chemical FDR (8-10")	0.14 – 0.23	1.2 – 1.6 (PC)
CIR (2-5")	0.28 – 0.33 (0.30)	1.5 – 1.7

Dependent on agency design philosophy and experience, quality of materials, and stabilizer type and amount

Structural coefficients / granular factors

Determined from resilient modulus testing of cores, lab-prepared specimens, or in-place deflection measurements (preferred)

Pavement design

- The pavement structure depth of recycling and overlay thickness – is primarily influenced by:
 - Traffic especially trucks
 - Subgrade type and properties
 - Aggregate base or stabilized base thickness, type, and quality / condition
 - Deflection measurements
 - Additive properties used in recycling
 - Climate
 - Design life

Example as-built structures

- CIR
 - Preservation product with some structural improvement
 - Leaves a portion of existing asphalt pavement in place
 - Does not treat the base or subgrade
- FDR
 - Of the three treatments, has the most structural improvement
 - Treats the entire depth of asphalt pavement
 - Possibly treats the subgrade
- HIR
 - Preservation product
 - Leaves a portion of existing asphalt pavement in place

CIR examples

- Nevada DOT CIR designs
 - For Category 4 or 5 (< 1,600 ADT), 3" CIR with double chip seal
 - For Categories 1 to 3 (>1,600 ADT), calculate
 ESALs for CIR design. >10,000 ADT with overlay
- Virginia I-81 (Augusta County) left lane
 - 21,000 AADT and 28% trucks
 - Before: 12" HMA over 11" aggregate base
 - After: 4" new HMA over 5" CIR with foamed asphalt over remaining HMA over aggregate base

CIR examples

- Washington Road, Tazewell County, Illinois (2001)
 - Up to 4600 AADT and 15% trucks
 - Before: 12" HMA over 12" gravel base
 - After: 3" new HMA over 3" CIR with emulsified asphalt over 9" remaining HMA over base
- Maple Lake, MN Municipal Airport Taxiway
 - Average 57 aircraft / day (general aviation)
 - Before: 6" HMA on clay subgrade
 - After: 3" new asphalt over 3" CIR (with 25% aggregate added and emulsified asphalt)

FDR examples

- Washington Ave. in Las Vegas, NV
 - 15,000 AADT and 3% trucks. Curbed city street 5 lanes
 - Before: 5" HMA over 15" aggregate base
 - After: Mill off old HMA. 5" new HMA over 6" FDR with emulsified asphalt over existing base
- Fairburn, Georgia
 - 4260 AADT, two lanes
 - Before: 4" HMA over 7" aggregate base
 - After: Widened road. 3.25" HMA over 6" FDR

FDR examples

- CR 52 in Long County, Georgia
 - 3,375 AADT and 15% trucks
 - Before: 1.25" HMA over 6" sand clay base
 - After: 1.5" new HMA over 6" FDR with cement over existing base
- Lancaster, California
 - Up to 5,900 AADT with 11% trucks
 - Before: 3" HMA over 6" aggregate base
 - After: 4.5" HMA over 4.5" FDR

HIR examples

- Milwaukee, WI (68th Street)
 - Four lanes, city street traffic (residential)
 - Before: 3" HMA over concrete
 - After: 2" HIR (final surface) over remaining HMA

HIR examples

- Oklahoma Turnpike (Turner)
 - 28,000 AADT and 20% trucks
 - After: ¾" new UTBWC over 2" HIR over full depth asphalt

Summary and Conclusions

- Evaluate the pavement carefully for design inputs
- Ensure proper project selection for treatment
- Evaluate different pavement design alternatives and finalize choice
- Perform a mix design with a reliable method
- Verify structural coefficient or granular factor if new to the process

Resources

Valuable resources if more information is needed...

- 1993 AASHTO Guide for Design of Pavement Structures
- Caltrans Flexible Pavement Rehabilitation Manual
- Recycling and Reclamation of Asphalt Pavements Using In-Place Methods, NCHRP Synthesis 421, 2011
- Recycling seminars
- Asphalt Recycling and Reclaiming Association Basic Asphalt Recycling Manual
- www.arra.org

Thank You!

Todd Thomas, P.E. Colas Solutions, Inc. Solutions 7374 Main Street Cincinnati, Ohio 45244 Direct: 513-272-5657 Email: tthomas@colassolutions.com www.colassolutions.com

